
MC2RAM
In-SRAM Markov Chain Monte Carlo Sampling for Fast 

Bayesian Inference
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Bayesian Inference (BI) in 
Neural Network

From NN with Fixed Weights
Predicted label: Automobile

Correct label: Truck

From NN with Densities of Weights
Predicted label: Automobile

Correct label: Truck
Epistemic uncertainty: 1.9018
Aleatoric uncertainty: 0.0004
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Simulated distribution
Ground truth

The posterior probability distribution 
of  weights  over  data  for  a  given 
model  is  a  mixture  of  gaussian 
(GMM) components.

Bivariate GMM posterior of weights 
is  sampled  by  MC2RAM  using 
Metropolis-Hastings  (MH)  MCMC 
sampling criteria.

In  Bayesian  Inference  (BI),  the 
predictions  over  different  model 
parameters  are  weighted  by  how 
much  we  believe  in 
those  parameter 
values  given  the 
data.

Accounting  for 
these uncertainties in 
prediction  is  crucial 
for  critical  real-time 
decision  making  in  settings  like 
autonomous  driving  and  surgical 
robots
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• KL  divergence  figures  illustrate  the    
degree  of  deviation  of  sampled 
distribution from ground truth posterior

• MCMC sampling is imprecision tolerant 
to SRAM peripherals (DAC/ADC)

• Power  share  is  greatly  impacted  by 
peripheral components in SRAM

• Sampling in higher dimensions call out 
for efficient and high degree of parallel 
operations using multiple SRAM banks

MCMC-MH based samples observed 
over ground truth posterior
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Θ : weight (w), bias (b)
Bayes model: P(θ|D) α P(D|θ).P(θ)

Prediction: P(y|x,D) = ∫P(y|x,θ).P(θ|D)dθ
                                 (Intractable integral)

Using Monte Carlo approach to
numerically compute these quantities
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Metropolis-Hastings sample 
acceptance/rejection Co-located MC2RAM peripherals

A Mixture-of-Gaussian Density Computation

A key framework to accelerate MCMC based 
sampling for BI

Vdd=1V; 8-bit precision DAC; 6-bit precision ADC

Power share per sampling iteration

To Investigate…
Can peripherals be more efficient?

Is Metropolis-Hastings good enough for BI?
Can we efficiently accelerate sampling for 

500-dimensional random variables?
Tapeout complexities?
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