MCZ2RAM

In-SRAM Markov Chain Monte Carlo Sampling for Fast

Bayesian Inference

Priyesh Shukla and Amit Ranjan Trivedi

Department of Electrical and Computer Engineering, University of Illinois at Chicago, IL, USA

In Bayesian Inference (BI), the
predictions over different model

parameters are weighted by how
much we believe in

those  parameter
values given the

data.

N

Accounting for
these uncertainties in |}
prediction is crucial "=
for critical real-time
decision making in
autonomous driving and
robots

settings like
surgical
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From NN with Densities of Weights
Predicted label: Automobile
Correct label: Truck
Epistemic uncertainty: 1.9018
Aleatoric uncertainty: 0.0004

Bayesian Inference (BI) in
Neural Network

O : weight (w), bias (b)
Bayes model: P(0\D) a P(D\|0).P(0)

Prediction: P(y|x,D) = |P(y|x,0).P(0|D)d0
(Intractable integral)

Using Monte Carlo approach to
numerically compute these quantities

|G(x).F(x)dx = (1/T). 2. G(x,.)

G(x)=Mixture of Gaussians which is
proportional to Exponent computed as

E() =E(t-1) + (R/ajz).R + 2. (R/ajz)

Metropolis-Hastings sample
acceptancelrejection

‘ F(x): density function‘

R: random
sample
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The posterior probability distribution
of weights over data for a given

model is a mixture of gaussian
(GMM) components.

Bivariate GMM posterior of weights

is sampled by MC2RAM using
Metropolis-Hastings (MH) MCMC
sampling criteria.

A key framework to accelerate MCMC based

sampling for BI

Candidate sample generation: In-SRAM random
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Density computation:
SRAM arrays partially
compute density using
SIMD instructions

Sample acceptance/
rejection: Centralized
processing layer compares

F(x ™)/F(x..;) against U

A Mixture-of-Gaussian Density Computation

SRAM-embedded random Parallel DAC-operand

number generators \ DAC array buffer 2
\ 2
Hj1 | Xe1s1 R; D; 1/o4 R;
Hj2 Xt-152 R; ‘—@ l/o 22 R;
Min | Xt R, —<D,H s | R,
i i l Compute scalar

terms of E;

Column selector/multiplexer

@ Read/Write Port

y
Generate random numbers

ADC*REG and copy to DAC buffer

Shift/Sign Op. _.\
> Generate partial

| terms of E;
Output REG |—

\

Co-located MC2RAM peripherals
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MCMC-MH based samples observed
over ground truth posterior

Vdd=1V; 8-bit precision DAC; 6-bit precision ADC
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e KL divergence figures illustrate the

degree of deviation of sampled
distribution from ground truth posterior

o MCMC sampling is imprecision tolerant

to SRAM peripherals (DAC/ADC)

e Power share is greatly impacted by

peripheral components in SRAM

e Sampling in higher dimensions call out

for efficient and high degree of parallel
operations using multiple SRAM banks

To Investigate...
Can peripherals be more efficient?

Is Metropolis-Hastings good enough for BI?

Can we efficiently accelerate sampling for
500-dimensional random variables?

Tapeout complexities?
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